Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chellamuthu
Muthamizhchelvan, ${ }^{\text {a }}$ Kolandaivelu Saminathan, ${ }^{\text {b }}$ Krishnan SethuSankar ${ }^{c}$ and Kandasamy Sivakumar ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Physics, SRM Engineering College, Kattankulathur 603 203, India,
${ }^{\mathbf{b}}$ Department of Physics, Anna University, Chennai 600025 , India, and ${ }^{\text {c }}$ Department of Physics, RKM Vivekananda College, Chennai 600 004, India.

Correspondence e-mail: surya@annauniv.edu

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.062$
$w R$ factor $=0.176$
Data-to-parameter ratio $=11.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Cyclohexylammonium picrate

In the crystal structure of the title salt, $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}^{-}$, picrate anions lie parallel to one another with a relative orientation of nearly 120°. The protonated N atom of the cation makes one linear and two bifurcated hydrogen bonds with three neighbouring picrate ions. The centrosymmetrically related anions and cations form hydrogen-bonded graph-set motifs of $R_{4}^{2}(8)$ and $R_{4}^{4}(12)$ alternately along the [010] direction.

Comment

Picric acid forms salts with various protonated organic molecules that are convenient for the identification and qualitative analysis of relevant organic compounds (Takayanagi et al., 1996). The formation of picrates is also a common method for the conversion of liquids into stable, tractable solid compounds, which, in many cases, leads to the formation of crystalline solids suitable for X-ray structure determination (Saleh et al., 1997). Cyclohexylamine is used as a corrosion inhibitor in boiler feed water and has important applications as a chemical intermediate. Crystal structures of a number of cyclohexylammonium salts have been studied previously (Lis \& Jerzykiewicz, 1995; Weichsel \& Lis, 1989). Picric acid readily forms a crystalline salt with this amine, and in this study, the crystal structure was determined in order to understand the nature and directionality of the specific $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond involving the protonated N atom (Muthamizhchelvan, Saminathan, Fraanje et al., 2005a,b; Muthamizhchelvan, Saminathan, SethuSankar et al., 2005a,b,c,d,e)

(I)

Fig. 1 shows a displacement ellipsoid plot of the title compound, (I). The bond lengths of the anion (Table 1) show characteristic values, with $\mathrm{C} 1-\mathrm{O} 1$ intermediate between single- and double-bond character, and $\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 1-\mathrm{C} 6$ being longer and deviating from the standard aromatic $\mathrm{C}-\mathrm{C}$ value of $1.395 \AA$ (Walkinshaw, 1986). These bond lengths are similar to those of other picrate salts. The average $\mathrm{N}-\mathrm{O}$ distance of the nitro groups is comparable to the literature $\mathrm{C}_{\mathrm{ar}}-\mathrm{NO}_{2}$ value of 1.217 (11) \AA (Allen et al., 1987) and also agrees with the average value of 1.216 (7) \AA reported by SethuSankar et al. (2003). The benzene plane of the picrate ion lies parallel to the ($20 \overline{1}$) plane.

The title compound, showing 50% probability displacement ellipsoids for the non-H atoms, with the atom-numbering scheme.

The twist angles of the three nitro groups of the picrate ions show that the ortho nitro groups O2/N1/O3 and O6/N3/O7 deviate from the benzene plane by $29.6(2)$ and $18.7(4)^{\circ}$, respectively, and the para nitro group, O4/N2/O5, by $8.3(4)^{\circ}$. These values exhibit a slight decrease in the tilt angle of O6/ $\mathrm{N} 3 / \mathrm{O} 7$ and show a slight increase in the tilt angle of the para nitro group compared with their characteristic tilting features. It is observed that in the crystal structure two picrate ions lie parallel to one another with a relative orientation of about 120° and separated by $3.555 \AA$. Their relative orientation makes the O4/N2/O5 group of one picrate ion lie over the O6/ $\mathrm{N} 3 / \mathrm{O} 7$ group of another picrate ion.

The $\mathrm{C} 7-\mathrm{N} 4$ bond length involving the protonated N atom of the cyclohexylammonium cation is $1.505(5) \AA$, which is longer than those found in other structures and also the value (1.469 Å) given by Allen et al. (1987). The C-C distances in the cation range from 1.514 (6) \AA to 1.523 (6) \AA with an average value of $1.519 \AA$. The cyclohexane ring exists in its most stable chair conformation.

The protonated atom N4 makes five hydrogen bonds with three of its neighbouring picrate anions. We observe that, of the three H atoms of N 4 , two are involved in bifurcated hydrogen bonds and the other in a linear bond. The bifurcated hydrogen bonds are of varying strengths; in particular, those involving the phenolic O atoms (O1) are stronger than the others. Such cases have been observed in few structures and are in line with the discussions by Taylor et al. (1984).

The centrosymmetrically related cations and anions are linked through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The hydrogen bonds in this structure were analysed by graph-set analysis (Bernstein et al., 1995). A set of centrosymmetrically related anions and cations form a graph-set motif of $R_{4}^{2}(8)$ around the centre of symmetry involving $\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 1$ (Table 2 and Fig. 2). Another set of inversion-related molecular ions have a graph-set motif of $R_{4}^{4}(12)$, involving $\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 7$ and $\mathrm{N} 4-$ $\mathrm{H} 4 \mathrm{C} \cdots \mathrm{O}^{\mathrm{ii}}$ (Table 2 and Fig. 3). These hydrogen-bond motifs alternate along the [010] direction as an infinite chain. Two

Figure 2
The hydrogen-bonded (dashed lines) graph-set motif $R_{4}^{2}(8)$ involving $\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 1$. The prime corresponds to symmetry code (i) in Table 1
more hydrogen-bonded networks are also found in this structure: (i) with $\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 1$ and $\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 7$ combining together to form the graph-set motif $R_{1}^{2}(6)$, namely $\mathrm{H} 4 A \cdots \mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 3-\mathrm{O} 7$, and (ii) another motif $R_{1}^{2}(6)$, involving $\mathrm{N} 4-\mathrm{H} 4 B \cdots \mathrm{O} 1^{\mathrm{i}}$ and $\mathrm{N} 4-\mathrm{H} 4 B \cdots \mathrm{O} 2^{\mathrm{i}}$. In addition, the structure contains three more hydrogen bonds of C $\mathrm{H} \cdots \mathrm{O}$ type (Table 2). The packing of the salt, viewed down the crystallographic b axis, is shown in Fig. 4.

Experimental

The title salt was prepared by addition of cyclohexylamine (2.3 g) to a solution of picric acid $(1.0 \mathrm{~g})$ in ethanol (100 ml), followed by slow evaporation of the solvent to yield yellow needle-shaped single crystals suitable for X-ray diffraction studies.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}^{+} . \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}{ }^{-}$
$M_{r}=328.29$
Monoclinic, $\mathrm{C} 2 / \mathrm{c}$
$a=23.543$ (1) A
$b=8.7177$ (10) \AA
$c=18.6177$ (14) A
$\beta=128.484(10)^{\circ}$
$V=2991.1$ (4) \AA^{3}
$Z=8$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.969, T_{\text {max }}=0.998$
2686 measured reflections
2619 independent reflections
1489 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.176$
$S=1.01$
2619 reflections
220 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& D_{x}=1.458 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \text { reflections } \\
& \theta=8-20^{\circ} \\
& \mu=0.12 \mathrm{~mm}^{-1} \\
& T=2933(2) \mathrm{K} \\
& \text { Cut needle, yellow } \\
& 0.25 \times 0.20 \times 0.15 \mathrm{~mm} \\
& \\
& \\
& R_{\text {int }}=0.027 \\
& \theta_{\max }=25.0^{\circ} \\
& h=0 \rightarrow 27 \\
& k=-10 \rightarrow 0 \\
& l=-22 \rightarrow 17 \\
& 2 \text { standard reflections } \\
& \quad \text { every } 100 \text { reflections } \\
& \text { intensity decay: } 1 \%
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0687 P)^{2} \\
&+6.4872 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.59 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.256(4)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.442(5)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.438(5)$		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	$123.9(3)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$111.7(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$124.4(3)$		

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 1$	$0.82(5)$	$2.12(5)$	$2.921(5)$	$166(4)$
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 7$	$0.82(5)$	$2.48(5)$	$3.011(5)$	$124(4)$
$\mathrm{N} 4-\mathrm{H} 4 B \cdots 1^{\mathrm{i}}$	$1.11(6)$	$1.75(6)$	$2.844(4)$	$168(4)$
$\mathrm{N} 4-\mathrm{H} 4 B \cdots \mathrm{O}^{\mathrm{i}}$	$1.11(6)$	$2.40(5)$	$2.955(4)$	$109(3)$
$\mathrm{N} 4-\mathrm{H} 4 C \cdots \mathrm{O}^{\mathrm{ii}}$	$0.91(5)$	$2.07(5)$	$2.942(5)$	$162(4)$
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O}^{\mathrm{i}}$	0.97	2.74	$3.462(5)$	131
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O}^{\mathrm{iii}}$	0.98	2.53	$3.410(5)$	150
$\mathrm{C} 10-\mathrm{H} 10 B \cdots \mathrm{O}^{\text {iv }}$	0.97	2.71	$3.417(5)$	130

Symmetry codes: (i) $-x,-y,-z$; (ii) $-x,-y+1,-z$; (iii) $x,-y, z-\frac{1}{2}$; (iv)
$-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.

All H atoms were located in difference Fourier maps. The H atoms of the protonated N atom were refined isotropically. The C-bound H atoms were refined as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-$ $0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank Dr Babu Varghese, RSIC, Indian Institute of Technology, Chennai, for the single-crystal data collection.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.0/1.2. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Lis, T. \& Jerzykiewicz, B. (1995). Acta Cryst. C51, 1001-1005.
Muthamizhchelvan, C., Saminathan, K., Fraanje, J., Peschar, R. \& Sivakumar, K. (2005a). Acta Cryst. E61, o1153-o1155.

Muthamizhchelvan, C., Saminathan, K., Fraanje, J., Peschar, R. \& Sivakumar, K. (2005b). Anal. Sci. 21, x61-x62.

Muthamizhchelvan, C., Saminathan, K., SethuSankar, K., Fraanje, J., Peschar, R. \& Sivakumar, K. (2005a). Acta Cryst. E61, o1377-o1380.

Muthamizhchelvan, C., Saminathan, K., SethuSankar, K., Fraanje, J., Peschar, R. \& Sivakumar, K. (2005b). Acta Cryst. E61, o1546-o1548.

Muthamizhchelvan, C., Saminathan, K., SethuSankar, K., Fraanje, J., Peschar, R. \& Sivakumar, K. (2005c). Acta Cryst. E61, o2887-o2890.

Muthamizhchelvan, C., Saminathan, K., SethuSankar, K., Fraanje, J., Peschar, R. \& Sivakumar, K. (2005d). Acta Cryst. E61, o2910-o2912.

Figure 3
The hydrogen-bonded graph-set motif $R_{4}^{4}(12)$ involving $\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 7$ and $\mathrm{N} 4-\mathrm{H} 4 \mathrm{C} \cdots \mathrm{O} 6$. The prime corresponds to symmetry code (ii) in Table 2.

Figure 4
The packing of (I), viewed down the b axis. The hydrogen bonds are shown as dashed lines.

Muthamizhchelvan, C., Saminathan, K., SethuSankar, K., Fraanje, J., Peschar, R. \& Sivakumar, K. (2005e). Acta Cryst. E61, o2987-o2989.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Saleh, M. I., Salhin, A., Saad, B., Sivakumar, K. \& Fun, H. K. (1997). Z. Kristallogr. 212, 107-108.
SethuSankar, K., Saravanan, S., Velmurugan, D. \& Parvez, M. (2003). Acta Cryst. C59, o156-o158.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Takayanagi, H., Kai, T., Yamaguchi, S., Takeda, K. \& Goto, M. (1996). Chem. Pharm. Bull. 44, 2199-2204.
Taylor, R., Kennard, O. \& Versichel, W. (1984). J. Am. Chem. Soc. 106, $244-$ 248.

Walkinshaw, M. D. (1986). Acta Cryst. C42, 246-249.
Weichsel, A. \& Lis, T. (1989). Acta Cryst. C45, 1177-1180.

